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Outline



Outline

• The course provides a survey of modern statistical methodology for
analysis of recurrent event data.

• A key feature of this course is the integration of the R statistical software:
• Demonstrate the use of R packages reda and reReg

• Illustrate how survival quantities are computed
• Interpret the results
• Many examples
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Outline

• Slides and R codes can be downloaded from
https://www.sychiou.com/software/talk/
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Outline

• The course is divided into four parts:
1. Introduction to recurrent event data, notation and basic quantities
2. Exploring recurrent event data with event plots and cumulative sample mean

functions with reda and reReg

3. Simulating recurrent event data with reda and reReg

4. Fitting regression models with reReg
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Outline

• After taking the course, students will be able to
• Understand the features of recurrent event data and their implications in

drawing inference
• Use proper functions in reda and reReg to solve real-world problems
• Simulate recurrent data under different assumptions
• Interpret and present the analytic results in a clear and coherent way to answer

substantive questions
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Introduction



Univariate event time

• Survival analysis is the study of survival times and of the factors that
influence them.

• Subjects are often followed from a well-defined starting point until the event
of interest occurs or the study ends, whichever occurs first.

• Examples of starting point and outcome events are:

Starting points: study entry time, date of birth, treatment randomization.
Outcome events: hospitalization, tumor occurrences, or death.
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Recurrent event

• Non-fatal outcome may recur multiple times over the course of the study.

• The recurrent event times are recorded until a censoring point.

• The simplest way to analyze a recurrent event data is to focus on time to
the first occurrence, reducing the problem to that of a univariate event time.

• Throw out a big chunk of data and is inefficient (e.g. Claggett et al., 2018)

• Special techniques are needed to fully capitalize on the recurrent-event
information
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Example: Chronic Granulomatous Disease (CGD) Study

• Below we give a brief overview of the types of data we will be dealing with
in this course, illustrated with real-world examples.

• The International Chronic Granulomatous Disease (CGD) data is public
available from the survival package (Therneau, 2020).
> data(cgd, package = "survival")

> dim(cgd)

[1] 203 16

> head(subset(cgd,
+ select = c(id, tstart, tstop, status, enum, sex, age, random, treat)))

id tstart tstop status enum sex age random treat

1 1 0 219 1 1 female 12 1989-06-07 rIFN-g

2 1 219 373 1 2 female 12 1989-06-07 rIFN-g

3 1 373 414 0 3 female 12 1989-06-07 rIFN-g

4 2 0 8 1 1 male 15 1989-06-07 placebo

5 2 8 26 1 2 male 15 1989-06-07 placebo

6 2 26 152 1 3 male 15 1989-06-07 placebo

• The outcome of interest is repeated CGD infections
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Example: Chronic Granulomatous Disease (CGD) Study

• The dataset contains the time to serious infections observed through the
end of study for 128 CGD patients.

• The full description of the data is available from the documentation page:
> ?survival::cgd

• The important variables are:

id subject identification number
tstart start of each time interval
tstop end of each time interval

status 1 = the interval ends with an infection
enum observation number within subject
sex gender
age age (in years) at study entry

random date of randomization
treat placebo or gamma interferon
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Example: Chronic Granulomatous Disease (CGD) Study

• The aim is to assess the effect of gamma interferon (treat) on incidence
of repeated CGD infections.

• Patients were followed from the randomization to the end of study or
dropout (no death).

• The median length of follow-up time is 293 days:
> summary(tapply(cgd$tstop, cgd$id, max))

Min. 1st Qu. Median Mean 3rd Qu. Max.

91.0 264.8 293.0 292.8 343.0 439.0

• Number of infections per patients ranges from 0 to 7;
> table(tapply(cgd$status, cgd$id, sum))

0 1 2 3 4 5 7

84 27 9 5 1 1 1

• Correlation of recurrent events within patients
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Example: Rehospitalization data

• Another example is the rehospitalization data (González et al., 2005) from
the frailtypack package (Rondeau et al., 2019)
> data(readmission, package = "frailtypack")

> dim(readmission)

[1] 861 11

> head(readmission)

id enum t.start t.stop time event chemo sex dukes charlson death

1 1 1 0 24 24 1 Treated Female D 3 0

2 1 2 24 457 433 1 Treated Female D 0 0

3 1 3 457 1037 580 0 Treated Female D 0 0

4 2 1 0 489 489 1 NonTreated Male C 0 0

5 2 2 489 1182 693 0 NonTreated Male C 0 0

6 3 1 0 15 15 1 NonTreated Male C 3 0

• The frailtypack package can be installed with following:
> install.package("frailtypack")

• The outcome of interest is repeated rehospitalization.
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Example: Rehospitalization data

• The dataset contains rehospitalization times after surgery in 403 patients
diagnosed with colorectal cancer

• The important variables are

id subject identification number
t.start start of each time interval
t.stop end of each time interval
event 1 = the interval ends with a hospitalization
enum observation number within subject

time interocurrence (t.stop - t.start)
death 1 = died at the end of the interval (0 = alive)

chemo 1 = the patient did not receive chemotherapy (2 = received)
sex 1 = male and 2 = female
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Example: Rehospitalization data

• The aim is to investigate gender-based inequalities in hospital readmission
among patients diagnosed with colorectal cancer.

• Patients were followed from the date of surgery to the end of study or death.
• The median length of follow-up time is 1128 days.

> with(readmission, summary(tapply(t.stop, id, max)))

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 524 1128 1026 1460 2176

• Number of rehospitalization per patients ranges from 0 to 22;
> with(readmission, table(tapply(event, id, sum)))

0 1 2 3 4 5 6 8 9 10 11 16 22

199 105 45 21 15 8 4 1 1 1 1 1 1

• Correlation of recurrent events within patients
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Notations: Recurrent process

• For simplicity, we assume a single recurrent event process starts at t = 0

• Let T1,T2, . . . , denote the recurrent event times, where Tk is the time of the
k th event

• The associated counting process {N∗(t), t ≥ 0} records the cumulative
number of events generated by the process, or

N∗(t) =
∞∑

k=1

I(Tk ≤ t)

• N∗(t) also represents the number of events occurring over the interval [0, t ].

• More generally, the number of events occurring over the interval (s, t ] is

N∗(s, t) = N∗(t)− N∗(s).
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Notations: Recurrent process

• The counting processes are right-continuous; N∗(t) = N∗(t+).

• Models for recurrent events can be specified by considering the probability
distribution for the number of events in short intervals [t , t + dt)

• Define dN∗(t) = N∗(t + dt)− N∗(t) be the number of events in [t , t + dt).

• The following portrays a realization of an event process in terms of its
counting process

N∗(t)

t

dN∗(t)

t
0

1

2

3

0

1

2

3

T1 T2 T3 T1 T2 T3
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Notations: Intensity function

• There are two fundamental ways to describe recurrent event process:
• intensity function (conditional)
• mean function (marginal)

• The intensity function gives the instantaneous rate of an event occurring at
t , conditional on the process history.

• The intensity is defined formally as

λ{t |H(t)} = lim
dt→0

P{dN∗(t) = 1|H(t)}
dt

, (1)

where H(t) is the process history.
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Notations: Intensity function

• We will make a convenient assumption that events occurring in continuous
time and two events cannot occur simultaneously.

• Since dN∗(t) is either 0 or 1, the relationship in (1) is sometimes expressed
as

λ{t |H(t)}dt := E{dN∗(t)|H(t)}.

• Thus, the intensity function can be thought of as an extension of the
univariate hazard function to the recurrent event setting.
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Notations: Intensity function

• A special case where the incidence of a new event is independent of
previous events, then the intensity function is reduced to

λ{t |H(t)} = lim
dt→0

P{dN∗(t) = 1}
dt

= r(t).

• This implies the incidence of a new event is independent of previous events
(independent increments)

• Homogeneous Poisson process gives r(t) ≡ r

• The assumption is too strong for medical studies
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Notations: Mean function

• The other useful quantity is the mean function, defined as the marginal
average frequency of the recurrent event process, or

µ(t) = E{N∗(t)}.

• This has a close associated with the rate function

r(t)dt := dµ(t) = E{dN∗(t)}.

• Rate function is averaged version of intensity function and is by definition
non-random

• Rate function is easier to interpret than intensity

• The relationship between intensity and mean functions is

µ(t) =

∫ t

0
E[λ{t |H(t)}]dt .
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Notations: Mean function

• To many applied researchers, the mean function as the average cumulative
frequency is more intuitive and easier to interpret than the intensity function.

• The mean function alone does not completely determine the likelihood
function of the recurrent event process.

20/130



Notations: Observed data

• In practice, the recurrent event processes are subject to censoring.

• Let C denote the censoring time, independent of N∗(·) given covariates.

• The observed part of the outcome data is the recurrent event process
curtailed by C;

N(t) := N∗{min(t ,C)}

• When there is no terminal event (death), C is always observable.

• Thus, for a random sample of size n, the observed data consist of

{Ni (·),Ci ,Zi}, i = 1, . . . ,n,

where Zi is the covariate vector.
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Notations: Observed data

• When there is a terminal event in addition to the censoring time C.

• Denote the terminal event Y ∗i , the observed data is

{Ni (·),Yi ,Zi ,∆i}, i = 1, . . . ,n,

where Ni (t) := N∗{min(t ,Y )}, Y = min(C,Y ∗), and ∆ = I(Y ∗ ≤ C).

• It is important to keep in mind that our interest lies in the distribution of the
latent counting process N∗(t).
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Notations: Sample mean function

• For a homogeneous sample without covariates, there is a simple estimator
for the mean function of N∗(t) called the cumulative sample mean (CSM)
function defined as

µ̂(t) =
1
n

n∑
i=1

Ni (t). (2)

• In the presence of censoring, the CSM function is a Nelsen-Aalen-type
estimator given by

µ̂(t) =

∫ t

0

∑n
i=1 dNi (u)∑n

i=1 I(Ci ≥ u)
. (3)

• As n→∞, we have

µ̂(t)→
∫ t

0

E{dN(u)}
P(C ≥ u)

=

∫ t

0

P(C ≥ u)E[dN∗{(u)}]
P(C ≥ u)

= µ(t)
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Recurrent event objects;
Recur()



Recurrent event objects

• The reReg package offers simple ways to create plots allowing users to
understand recurrent data at glance

• To install the latest version of the reReg package is by
> ## install.packages("devtools")

> devtools::install_github("stc04003/reReg")

• Once installed, load it with library():
> library(reReg)
> packageVersion("reReg")

[1] '1.2.1'

• Note that, as of June 13, 2020, the version on my GitHub repository is one
version ahead of that on CRAN.
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Recurrent event objects

• To cite reReg, use
> citation("reReg")

To cite package 'reReg' in publications use:

Sy Han (Steven) Chiou and Chiung-Yu Huang (2020). reReg: Recurrent Event

Regression. R package version 1.2.1. http://github.com/stc04003/reReg

A BibTeX entry for LaTeX users is

@Manual{,

title = {reReg: Recurrent Event Regression},

author = {Sy Han (Steven) Chiou and Chiung-Yu { Huang}},

year = {2020},

note = {R package version 1.2.1},

url = {http://github.com/stc04003/reReg},

}

• The citation will be updated once the next version is submitted to CRAN
(summer 2020).

25/130



Recurrent event objects

• Depending on whether there is a terminal event, the observed data is

{Ni (·),Ci ,Zi} or {Ni (·),Yi ,Zi ,∆i}.

• From the example data, variables like id, tstart, tstop, status, and
death, are needed to specify the recurrent process.

• Just like the Surv() function in the Survival package, to use functions in
reReg and reda , we must create a formula response to represent the
recurrent object.
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Recurrent event objects with Recur()

• The Recur()() is used to create such recurrent object
• The arguments of Recur()is

> args(Recur)

function (time, id, event, terminal, origin, check = c("hard",

"soft", "none"), ...)

NULL

• The Recur()function is a successor function of the deprecated functions
Survr() from reda and reSurv() from reReg.
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Recurrent event objects with Recur()

• A short description of the six arguments are:

time specifies the time of recurrent event or censoring
id specifies the subject identification

event specifies the status or types of the recurrent events
terminal specifies the status or types of the terminal events
origin specifies the time origin of each subject
check specifies how to perform checks

• The Recur()function is very flexible and not all these six arguments are
required.

• When a recurrent event object is created without specifying all six
arguments, the above arguments have different roles.
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Recurrent event objects with Recur()

• We will first explore Recur()with a small example
> (dat0 <- subset(readmission, subset = id <= 4,

+ select = c(id, t.start, t.stop, event, death)))

id t.start t.stop event death

1 1 0 24 1 0

2 1 24 457 1 0

3 1 457 1037 0 0

4 2 0 489 1 0

5 2 489 1182 0 0

6 3 0 15 1 0

7 3 15 783 0 1

8 4 0 163 1 0

9 4 163 288 1 0

10 4 288 638 1 0

11 4 638 686 1 0

12 4 686 2048 0 0
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Recurrent event objects with Recur()

• A recurrent event object can be created with:
> with(dat0, Recur(time = t.stop, id = id, event = event, terminal = death))

[1] 1: (0, 24], (24, 457], (457, 1037+]

[2] 2: (0, 489], (489, 1182+]

[3] 3: (0, 15], (15, 783*]

[4] 4: (0, 163], (163, 288], ..., (686, 2048+]

• From the outputted list we can see that subject 1 experienced
• recurrent events (rehospitalization) 24 days and 457 days after surgery
• a censored event (end of follow-up, with no death) 1037 days after surgery
• the censored event is indicated by +

• Similarly, subject 3 experienced
• a recurrent event 15 days after surgery
• a terminal event (death) 783 days after surgery
• the terminal event is indicated by ∗

• In readmission, all subjects start with time = 0, so the argument
origin does not need to be specified.
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Recur(), the time argument

• The time argument is a numerical vector representing the
• time of recurrent event, or censoring, or
• a list of time intervals created by time1 %2to% time2

> with(dat0, Recur(time = t.start %2% t.stop, id = id,

+ event = event, terminal = death))

[1] 1: (0, 24], (24, 457], (457, 1037+]

[2] 2: (0, 489], (489, 1182+]

[3] 3: (0, 15], (15, 783*]

[4] 4: (0, 163], (163, 288], ..., (686, 2048+]

• When specifying an interval, Date and difftime are allowed and
converted to numeric values.
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Recur(), the time argument

• The time1 %to% time2 returns a list of two elements
• %2% is an alias of %to%

> str(dat0$t.start %to% dat0$t.stop)

List of 2

$ time1: int [1:12] 0 24 457 0 489 0 15 0 163 288 ...

$ time2: int [1:12] 24 457 1037 489 1182 15 783 163 288 638 ...

> str(dat0$t.start %2% dat0$t.stop)

List of 2

$ time1: int [1:12] 0 24 457 0 489 0 15 0 163 288 ...

$ time2: int [1:12] 24 457 1037 489 1182 15 783 163 288 638 ...

• This function is convenient when subjects start with different origins.
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Recur(), the id argument

• The id argument is a subject identificator

• It can be numeric vector, character vector, or a factor vector

• If it is left unspecified, Recur()will assume that each row represents a
subject

• If each row is assumed to be a subject, then Recur()becomes like Surv()
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Recur(), the event argument

• The event argument is a numeric vector that may represent the status or
types of recurrent events.

• A logical vector is allowed and converted to a numeric vector.

• Non-positive values are internally converted to zero indicating censoring
status (values ≥ 0 indicate recurrent events)

• If event is not specified, Recur()assumes times before the last event
times are recurrent events
> with(dat0, Recur(time = t.stop, id = id, terminal = death))

[1] 1: (0, 24], (24, 457], (457, 1037+]

[2] 2: (0, 489], (489, 1182+]

[3] 3: (0, 15], (15, 783*]

[4] 4: (0, 163], (163, 288], ..., (686, 2048+]
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Recur(), the terminal argument

• The terminal argument is a numeric vector that may represent the status
or types of the terminal events

• A logical vector is allowed and converted to a numeric vector.

• Non-positive values are internally converted to zero indicating censoring
status (values ≥ 0 indicate terminal events)

• If a scalar value is specified, all subjects will have the same status of
terminal events at their last recurrent episodes.

• The length of the specified terminal should be equal to the number of
subjects, or number of data rows.

• In the latter case, each subject may have at most one positive entry of
terminal at the last recurrent episode.
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Recur(), the terminal argument

• When terminal is omitted or set terminal = 0, Recur()assumes the
last event times are censoring times.

• This is equivalent to assume there is no terminal times (e.g., cgd)
> with(dat0, Recur(time = t.stop, id = id, event = event))

[1] 1: (0, 24], (24, 457], (457, 1037+]

[2] 2: (0, 489], (489, 1182+]

[3] 3: (0, 15], (15, 783+]

[4] 4: (0, 163], (163, 288], ..., (686, 2048+]

> with(dat0, Recur(time = t.stop, id = id, event = event, terminal = 0))

[1] 1: (0, 24], (24, 457], (457, 1037+]

[2] 2: (0, 489], (489, 1182+]

[3] 3: (0, 15], (15, 783+]

[4] 4: (0, 163], (163, 288], ..., (686, 2048+]

• Similarly, if all recurrent events are terminated by a terminal events, one can
set terminal = 1:
> with(dat0, Recur(time = t.stop, id = id, event = event, terminal = 1))

[1] 1: (0, 24], (24, 457], (457, 1037*]

[2] 2: (0, 489], (489, 1182*]

[3] 3: (0, 15], (15, 783*]

[4] 4: (0, 163], (163, 288], ..., (686, 2048*]
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Recur(), the origin argument

• The origin argument specifies the time origin of each subject.
• If a scaler value is specified, all subjects will have the same origin at the

specified value.
> with(dat0, Recur(time = t.stop, id = id, event = event,

+ terminal = death, origin = 0))

[1] 1: (0, 24], (24, 457], (457, 1037+]

[2] 2: (0, 489], (489, 1182+]

[3] 3: (0, 15], (15, 783*]

[4] 4: (0, 163], (163, 288], ..., (686, 2048+]

> with(dat0, Recur(time = t.stop, id = id, event = event,

+ terminal = death, origin = 10))

[1] 1: (10, 24], (24, 457], (457, 1037+]

[2] 2: (10, 489], (489, 1182+]

[3] 3: (10, 15], (15, 783*]

[4] 4: (10, 163], (163, 288], ..., (686, 2048+]
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Recur(), calling without argument names

• As in many R functions, when calling Recur(), the users can specify the
arguments by complete name (as before), or by position.

• Arguments are matched by the position.
> with(dat0, Recur(t.stop))

[1] 1: (0, 24+] 2: (0, 457+] 3: (0, 1037+] 4: (0, 489+] 5: (0, 1182+]

[6] 6: (0, 15+] 7: (0, 783+] 8: (0, 163+] 9: (0, 288+] 10: (0, 638+]

[11] 11: (0, 686+] 12: (0, 2048+]

> with(dat0, Recur(t.stop, id))

[1] 1: (0, 24], (24, 457], (457, 1037+]

[2] 2: (0, 489], (489, 1182+]

[3] 3: (0, 15], (15, 783+]

[4] 4: (0, 163], (163, 288], ..., (686, 2048+]
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Recur(), calling without argument names

• More examples:
> with(dat0, Recur(t.stop, id, event))

[1] 1: (0, 24], (24, 457], (457, 1037+]

[2] 2: (0, 489], (489, 1182+]

[3] 3: (0, 15], (15, 783+]

[4] 4: (0, 163], (163, 288], ..., (686, 2048+]

> with(dat0, Recur(t.stop, id, event, death))

[1] 1: (0, 24], (24, 457], (457, 1037+]

[2] 2: (0, 489], (489, 1182+]

[3] 3: (0, 15], (15, 783*]

[4] 4: (0, 163], (163, 288], ..., (686, 2048+]

• The above functions calls were execute without errors though returns
different results.
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Recur(), the check argument

• The check argument is a character string to specify the checking rule

• There are three possible values can be specified
• hard An error will be thrown and a recurrent event object will not be returned
• soft A warning will be thrown and a recurrent event object will be returned
• none no data checking procedure will be ran

• The checking rule include
• Subject identification (id), event times, censoring time (time), and event

indicator (event) cannot contain missing values.
• There has to be only one censoring time ≤ recurrent event time.
• The time origin has to be the same and not later than any event time.
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Recur(), the check argument

• In the following example, an option is used to limit the maximum number of
Recur()object to be printed
> options(reda.Recur.maxPrint = 3 )

> with(cgd, Recur(tstop, id, status, check = "hard"))

Error: Subjects censored before events: 87.
> head(with(cgd, Recur(tstop, id, status, check = "soft")))
Warning: Subjects censored before events: 87.

time1 time2 id event terminal origin

[1,] 0 219 1 1 0 0

[2,] 219 373 1 1 0 0

[3,] 373 414 1 0 0 0

[4,] 0 8 2 1 0 0

[5,] 8 26 2 1 0 0

[6,] 26 152 2 1 0 0

> head(with(cgd, Recur(tstop, id, status, check = "none")))

time1 time2 id event terminal origin

[1,] 0 219 1 1 0 0

[2,] 219 373 1 1 0 0

[3,] 373 414 1 0 0 0

[4,] 0 8 2 1 0 0

[5,] 8 26 2 1 0 0

[6,] 26 152 2 1 0 0
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Recur(), the check argument

• The message indicates the 87th subject does not have a censoring time.
> subset(cgd, id == 87)

id center random treat sex age height weight inherit steroids propylac

149 87 NIH 1989-11-03 placebo male 19 170 71.2 X-linked 0 1

150 87 NIH 1989-11-03 placebo male 19 170 71.2 X-linked 0 1

hos.cat tstart enum tstop status

149 US:NIH 0 1 99 1

150 US:NIH 99 2 306 1

> with(subset(cgd, id == 87), Recur(tstop, id, status, check = "soft"))

Warning: Subjects censored before events: 87.

[1] 87: (0, 99], (99, 306+]

• When check = "soft" or check = "none" the Recur()function
“guessed” the last row (time 306) is a censoring time.
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Event plots: plotting Recur()

• An event plot is a quick and easy way to glance at recurrent event data.
• The easiest way to create a event plot is by plotting the Recur()object with
R ’s generic function plot() when reReg is loaded.

• We will start with small examples,
> reObj <- with(subset(readmission, subset = id <= 10),

+ Recur(t.stop, id, event, death))

> plot(reObj)
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43/130



Event plots: extension with ggplot2

• The event plot is in a ggplot object and is capable with ggplot layers.
• For example

> library(ggplot2)
> plot(reObj) + ggtitle("First 10 subjects in readmission") + theme_gray()
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Event plots: extension with gridExtra

• Extensions to ggplot2 can also be applied:
> reObj2 <- with(subset(readmission, subset = id %in% 11:20),

+ Recur(t.stop, id, event, death))

> library(gridExtra)
> grid.arrange(plot(reObj) + ggtitle("") + theme(legend.position = "none"),

+ plot(reObj2) + ggtitle("") + theme(legend.position = "none"),

+ ncol = 2)
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Event plots: extension with gridExtra

• The grid.arrange() gives
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Event plots: more options

• A list of common graphical options can be passed down to plot() as
arguments when plotting a Recur()object.

• Some of these arguments are:
xlab customizable x-label, default value is “Time”
ylab customizable y-label, default value is “Subject”
main customizable title, default value is “Recurrent event plot”
cex size of the points
alpha is between 0 and 1, used to control the transparency of points
terminal.name customizable label for terminal event, default value is “Terminal event”
Recurrent.name customizable legend title for recurrent event, default value is

“Recurrent events”
Recurrent.type customizable label for recurrent event type, default value is NULL
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Event plots: more options

• Here is a modified event plot:
> plot(reObj, cex = 5, xlab = "Time in days", ylab = "Patients",

+ main = "Event plot for readmission data",

+ terminal.name = "Death", recurrent.name = "Hospital readmission")
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Event plots: more options

• We will see how the event plot looks for the readmission data
> plot(with(readmission, Recur(t.stop, id, event, death)))

Error: Subjects having multiple terminal events: 60, 109, 280.
> subset(readmission, id %in% c(60, 109, 280))

id enum t.start t.stop time event chemo sex dukes charlson death

119 60 1 0 799 799 1 NonTreated Male C 0 1

120 60 2 799 800 1 0 NonTreated Male C 0 1

204 109 1 0 226 226 1 NonTreated Male D 3 1

205 109 2 226 227 1 0 NonTreated Male D 3 1

579 280 2 0 3 3 1 NonTreated Male A-B 0 0

580 280 3 3 166 163 1 NonTreated Male A-B 0 0

581 280 4 166 383 217 1 NonTreated Male A-B 0 1

582 280 5 383 390 7 1 NonTreated Male A-B 0 0

583 280 6 390 391 1 0 NonTreated Male A-B 0 1

• The Recur()finds errors in subjects # 60, # 109, and # 280.
• We will create a new readmission without these subjects:

> readmission0 <- subset(readmission, !(id %in% c(60, 109, 280)))
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Event plots: more options

• Removing the problematic subjects, we have
> reObj <- with(readmission0, Recur(t.stop, id, event, death))

> plot(reObj, xlab = "Time in days", ylab = "Patients",

+ main = "Event plot for readmission data",

+ terminal.name = "Death", recurrent.name = "Hospital readmission")
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Event plots: plotEvents()

• The plotEvents()function is a more specialized function for event plots.
> args(plotEvents)

function (formula, data, result = c("increasing", "decreasing",

"asis"), control = list(), ...)

NULL

formula is a formula object, with the response on the left of a “∼”
operator, and the predictors on the right. The response must
be a recurrent event survival object as returned by function
Recur().

data is an optional data frame in which to interpret the variables
occurring in the formula
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Event plots: plotEvents()

• More arguments follow:
result is an optional character string specifying whether the event

plot is sorted by the subjects’ terminal time. The available
options are

• "increasing" sort the terminal time from in increasing order
(default). This places longer terminal times on top.

• "decreasing" sort the terminal time from in decreasing order
(default). This places shorter terminal times on top.

• "asis" present the event plot without sorting.

control a list of control parameters (graphical parameters that can be
passed to plotEvents()without including in the control list)
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Event plots: plotEvents()

• The formula argument allows user to include covariates to be used to
stratify event plots.

• When there is no covariates, plotEvents() reduces to plot().
• The following gives the same event plot.

> plot(reObj)
> plotEvents(reObj)
> plotEvents(reObj ~ 1)

> plotEvents(reObj ~ 1, data = readmission0)

• The Recur()object can be created in plotEvents().
• The event plot above can also be created without defining reObj by calling

> plotEvents(Recur(t.stop, id, event, death) ~ 1, data = readmission0)
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Event plots: plotEvents()

• Suppose we want to stratify the event plot by sex, we can call
> plotEvents(reObj ~ sex, data = readmission0) ## or

> plotEvents(Recur(t.stop, id, event, death) ~ sex, data = readmission0)
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Event plots: plotEvents()

• The plotEvents()can handle more complicated stratification.
> plotEvents(Recur(t.stop, id, event, death) ~ sex + chemo, data = readmission0)
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Event plots: plotEvents()

• The different sorting of the event times
> plotEvents(Recur(t.stop, id, event, death) ~ sex + chemo, result = "dec",

+ data = readmission0)

> plotEvents(Recur(t.stop, id, event, death) ~ sex + chemo, result = "asis",

+ data = readmission0)
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Cumulative sample mean function: plotting Recur()

• The Nelson-Aalen estimator is implemented in both the reda (as mcf())
and reReg packages, but we will focus on the implementation in reReg.

• The CSM plot can be called by specifying the CSM = TRUE in plot()
> reObj <- with(readmission0, Recur(t.stop, id, event, death))

> plot(reObj, CSM = TRUE)
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Cumulative sample mean function: plotting Recur()

• Calling plot() directly computes (2), without adjusting to the censoring
times.

• Just like the event plots, basic graphical options can be added directly.
> plot(reObj, CSM = TRUE,

+ main = "Sample cumulative mean function for readmission data")
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Cumulative sample mean function: plotCSM()

• The CSM plot can also be created with the more specialized function,
plotCSM()

• The arguments are
> args(plotCSM)

function (formula, data, onePanel = FALSE, adjrisk = TRUE, smooth = FALSE,

control = list(), ...)

NULL

formula is a formula object; similar to that in plotEvents()

data is an optional data frame; similar to that in plotEvents()

onePanel is an optional logical value indicating whether the CSM will be
plotted in the same panel. This is useful when there are
multiple recurrent event types or in the presence of (discrete)
covariates.
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Cumulative sample mean function: plotCSM()

• More arguments:

adjrisk is an optional logical value indicating whether risk set will be
adjusted, e.g., if ‘TRUE’, subjects leave the risk set after
terminal times and the Nelson-Aalen estimator will be plotted.

smooth is an optional logical value indicating whether to add a
smooth curve obtained from a monotone increasing p-splines
implemented in package scam. This feature only works for
data with one recurrent event type.

control a list of control parameters; similar to that in plotEvents()
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Cumulative sample mean function: plotCSM()

• The functions plotCSM()and plotEvents()share a lot of similarities
• A side-by-side CSM plot, showing the CSM functions with and without risk

adjustment:
> plotCSM(reObj) + ggtitle("Nelson-Aalen estimator plot")

> plotCSM(reObj, adjrisk = FALSE)
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Cumulative sample mean function: plotCSM()

• Like the plotEvents(), plotCSM()can generate CSM plots given
covariates.
> plotCSM(reObj ~ sex, data = readmission0, main = "")

> plotCSM(reObj ~ sex, onePanel = TRUE, data = readmission0, main = "")
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More plot arguments

• The plot() function can be used to create event plots and CSM plots by
directly applying to a Recur()object.

• Some useful arguments from plotEvents()and plotCSM()can be
called with plot()
> args(reReg:::plot.Recur)

function (x, CSM = FALSE, event.result = c("increasing", "decreasing",

"asis"), csm.adjrisk = TRUE, csm.smooth = FALSE, control = list(),

...)

NULL
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plotEvents()and plotCSM()with multiple event types

• Both functions plotEvents()and plotCSM()can be used to
accommodate recurrent event data with multiple recurrent types.

• For illustration, we generate hypothetical event types for the readmission
data and store the corresponding indicator in event.
> set.seed(0); readmission0$event <- readmission0$event * sample(1:3, 852, TRUE)

> head(readmission0)

id enum t.start t.stop time event chemo sex dukes charlson death

1 1 1 0 24 24 2 Treated Female D 3 0

2 1 2 24 457 433 1 Treated Female D 0 0

3 1 3 457 1037 580 0 Treated Female D 0 0

4 2 1 0 489 489 1 NonTreated Male C 0 0

5 2 2 489 1182 693 0 NonTreated Male C 0 0

6 3 1 0 15 15 1 NonTreated Male C 3 0
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plotEvents()and plotCSM()with multiple event types

• The plotEvents()distinguishes the different recurrent event types by
color:
> plotEvents(Recur(t.stop, id, event, death) ~ sex, data = readmission0)

se
x 

=
 1

se
x 

=
 2

0 500 1000 1500 2000

Time

S
ub

je
ct Terminal event

Recurrent events 1

Recurrent events 2

Recurrent events 3

Recurrent event plot

65/130



plotEvents()and plotCSM()with multiple event types

• The legend labels can be modified.
> rTypes <- c("Elective admission", "Emergency admission", "Same-day surgery")

> plotCSM(Recur(t.stop, id, event, death) ~ sex, data = readmission0,

+ recurrent.name = "Types of Hospital Admissions",

+ recurrent.type = rTypes)
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Simulating recurrent event data;
simSC()



Simulating recurrent event data

• The function simSC()is used to generate recurrent times data by
specifying the

• The rate function for the recurrent event process is λ(t)
• The hazard function for the terminal event is h(t)

• The arguments are:
> args(simSC)

function (n, a, b, type = "cox", zVar = 0.25, tau = 60, summary = FALSE)

NULL

• The argument type controls the structure of the rate function and the
hazard function.
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Simulating recurrent event data

• The rate function, λ(t), of the recurrent process can be specified as
• Cox-type model:

λ(t) = Zλ0(t)eX>a

• Accelerated mean model

λ(t) = Zλ0(teX>a)eX>a

• Scale-change model
λ(t) = Zλ0(teX>a)eX>b
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Simulating recurrent event data

• The notations are:
• λ0(t) is the baseline rate function
• Z ∼ Gamma(γ, γ) is a frailty variable
• X = (X1,X2) is the covariate vector, where

• X1 follows a Bernoulli distribution with probability 0.5
• X2 follows a standard normal distribution

• a and b are the coefficients
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Simulating recurrent event data

• The hazard function, h(t), of the terminal event can be specified as:
• Cox-type model:

h(t) = Zh0(t)eX>a

• Accelerated mean model

h(t) = Zh0(teX>a)eX>a

• Scale-change model
h(t) = Zh0(teX>a)eX>b

• The baseline hazard function is denoted by h0(t)
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Simulating recurrent event data

• The type of rate function and the hazard function can be specified by the
type argument.

• The type is distinguished by a vertical bar (‘|’), with rate function on the left.
• Setting type = "cox|am" generates the recurrent process from a Cox model

and the terminal event from an accelerated mean model.

• When only one type is specified, both the recurrent process and the
terminal event will be generated from that model.

• Setting type = "cox|cox" is the same as setting type = "cox"
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Simulating recurrent event data

• The essential arguments for simSC() are

n is the number of observation
a & b are numeric vectors of parameter of length two
type a character string specifying the underlying model.

• In addition to the terminal events, a potentially informative censoring time,
C, is generated separately from an exponential distribution with rate

I(X1 = 1) · 1
60

+ I(X1 = 0) · Z 2

30
.

• The argument that control the strength of the informative censoring time is

zVar a numeric variable specifying the variance of Z (default =
0.25). When zVar = 0, the frailty variable is set to Z = 1.
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Simulating recurrent event data

• With the above configuration, the simSC() generates recurrent events up
to the minimum of τ , censoring time, and terminal event.

• The administrative censoring, τ , is controlled by the argument tau.
• A quick summary about the simulated data will be reported by specifying
summary = TRUE:
> set.seed(0); datCox <- simSC(200, c(1, 1), c(1, 1), summary = TRUE)

Summary results for number of recurrent event per subject:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000 1.000 4.000 7.465 9.250 59.000

Number of failures: 96 (48%); Number of censored events: 104 (52%)

Number of x1 == 1: 107 (53.5%); Number of x1 == 0: 93 (46.5%)

Summary results for x2:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.00805 -0.73887 -0.06734 -0.06081 0.59361 3.81028
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Simulating recurrent event data

• The following example generates recurrent events from an accelerated
mean model.
> set.seed(0)
> datAmCox <- simSC(200, c(1, 1), c(1, 1), type = "am|cox", summary = TRUE)

Summary results for number of recurrent event per subject:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000 2.000 4.000 4.525 6.250 19.000

Number of failures: 96 (48%); Number of censored events: 104 (52%)

Number of x1 == 1: 107 (53.5%); Number of x1 == 0: 93 (46.5%)

Summary results for x2:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.00805 -0.73887 -0.06734 -0.06081 0.59361 3.81028
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Simulating recurrent event data

• A side-by-side event plot shows the difference between datCox and
datAmCox is in the recurrent event process.
> grid.arrange(plotEvents(Recur(Time, id, event, status) ~ 1, data = datCox,

+ main = "type = cox") + theme(legend.position = "none"),

+ plotEvents(Recur(Time, id, event, status) ~ 1, data = datAmCox,

+ main = "type = am|cox") + theme(legend.position = "none"),

+ ncol = 2)
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Fitting regression model with
reReg()



Fitting regression model with reReg()

• A regression model is needed to assess the covariate effects on the
recurrent event process and terminal events.

• The reReg() function in reReg provides different approaches to fit
semiparametric regression model to recurrent event data.

• The arguments of the reReg() function are
> args(reReg)

function (formula, data, B = 200, method = c("cox.LWYY", "cox.GL",

"cox.HW", "am.GL", "am.XCHWY", "sc.XCYH"), se = c("NULL",

"bootstrap", "resampling"), control = list())

NULL
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Fitting regression model with reReg()

• The description of the arguments are

formula is a formula object, created by Recur().
data is an optional data frame.

B is a numeric value specifies the number of resampling or
bootstrap for the variance estimation. When B = 0, variance
estimation will not be carried out and standard error will be
returned as NA.

method a character string specifying the underlying model.
se a character string specifying the method for the variance

estimation.
control a list of control parameters.

• Most arguments of reReg() are straightforward, and we will focus our
discussion on method, se, and control.
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Fitting regression model with reReg()

• There are currently six available methods in reReg(); they each have their
own strength and limitation.

• These methods are generally different by
• model assumptions, e.g., Cox-type model, accelerated mean model, or

scale-change model
• the presence of a terminal event

• In the following, we will list important properties of these methods with
some discussion on the estimating techniques.
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reReg() with method = "cox.LWYY"

• When method = "cox.LWYY", reReg() implements the Andersen-Gill
intensity model (Self et al., 1982), whose inference procedure was
discussed in Pepe and Cai (1993); Lin et al. (2000).

• The model assumes the covariates are associated with the rate function via

λ(t |X ) = λ0(t)eX>α,

where λ0(t) is the baseline rate function, X is a time independent
p-dimensional covariate vector, and α is the regression coefficient.
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reReg() with method = "cox.LWYY"

• The standard estimation procedures can be derived in more than one way
(e.g. Cook and Lawless, 2007, Section 3.4.2).

• In particular, the partial likelihood score function for α is

n∑
i=1

∫ t

0

{
Xi − X̄ (t , α)

}
dNi (u),

where Ni (·) is the observed counting process as defined before,
X̄ (t , α) =

[∑n
i=1 I(Ci ≥ t)XieX>

i α
] / [∑n

i=1 I(Ci ≥ t)eX>
i α
]
.
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reReg() with method = "cox.LWYY"

• Advantage:
• Model is computational efficient because the estimating equation can be

solved by the coxph() from the survival package.
• Robust variance estimation is available

• Limitation:
• The model does not incorporate terminal events
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reReg() with method = "cox.LWYY"

• Suppose we generate a simulated data from a Cox model:
> set.seed(0); datCox <- simSC(500, c(1, -1), c(1, -1))

> fit <- reReg(Recur(Time, id, event, status) ~ x1 + x2, data = datCox)

> summary(fit)

Call: reReg(formula = Recur(Time, id, event, status) ~ x1 + x2, data = datCox)

Method: Lin-Wei-Yang-Ying method (fitted with coxph with robust variance)

Coefficients effect:

Estimate StdErr z.value p.value

x1 1.005 0.072 13.958 < 2.2e-16 ***
x2 -0.890 0.042 -21.322 < 2.2e-16 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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reReg() with method = "cox.LWYY"

• The estimated baseline rate function λ0 can be plotted with R’s generic
function plot().
> plot(fit)

Baseline cumulative hazard function is not available for method = cox.LWYY.

Only the baseline cumulative rate function is plotted.
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reReg() with method = "cox.GL"

• When method = "cox.GL", reReg() gives the methods proposed in
Ghosh and Lin (2002).

• Ghosh and Lin (2002) assumes the covaraites are associated with the
mean function via

µ(t |X ) = µ0(t)eX>α,

where mu0(t) is the baseline mean function.

• The formulation on the mean function reduces to

dµ(t |X ) = dµ0(t)eX>α,

when X is time-independent.
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reReg() with method = "cox.GL"

• Ghosh and Lin (2002) first considered an inverse probability censoring
weighting (IPCW) approach to account for the presence of a terminal event.

• The IPCW approach requires modeling the censoring distribution, which is
a nuisance.

• Ghosh and Lin (2002) then proposed an alternative method that involves
modeling the survival distribution of the terminal event times.

• Ghosh and Lin (2002) specifies a proportional hazards model for the
terminal events:

h(t |X ) = h0(t)eX>β ,

where h0(t) is the baseline hazard function.
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reReg() with method = "cox.GL"

• The estimation of h0(t) and β can be obtained via the partial likelihood
approach derived for Cox models, e.g., via coxph().

• Once h0(t) and β are estimated, an estimation of
S(t |X ) = exp

(
−
∫ t

0 eX>βdh0

)
can be calculated.

• The regression coefficient for the rate function is then the root of the
estimating equation:

n∑
i=1

∫ t

0

{
Xi − X̄ω(t , α)

}
ωi (t)dNi (u),

where X̄ω(t , α) =
[∑n

i=1 I(Ci ≥ t)ωi (t)XieX>
i α
] / [∑n

i=1 I(Ci ≥ t)ωi (t)eX>
i α
]
,

and ωi (t) = I(Xi ≥ t)/Ŝ(t |X ).
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reReg() with method = "cox.GL"

• The proposed model can be fitted with
> fit <- reReg(Recur(Time, id, event, status) ~ x1 + x2, data = datCox,

+ method = "cox.GL")

> summary(fit)

Call: reReg(formula = Recur(Time, id, event, status) ~ x1 + x2, data = datCox,

method = "cox.GL")

Coefficients (rate):

Estimate StdErr z.value p.value

x1 0.917 NA NA NA

x2 -0.739 NA NA NA

Coefficients (hazard):

Estimate StdErr z.value p.value

x1 0.758 NA NA NA

x2 -0.867 NA NA NA

• The variance estimation is not provided by default.
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reReg() with method = "cox.GL"

• The baseline functions can be plotted easily
> plot(fit)
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reReg() with method = "cox.GL"

• The functions plotRate() and plotHaz() can be applied to extract the
baseline rate function and the baseline hazard function, respectively.
> args(plotRate)

function (x, smooth = FALSE, control = list(), ...)

NULL

> args(plotHaz)

function (x, smooth = FALSE, control = list(), ...)

NULL

• The arguments are

x is an object of class reReg returned by the reReg() function
smooth is an optional logical value indicating whether to add a

smooth curve obtained from a monotone increasing p-spline.
control is a list of control parameters; this is similar to the control

argument in plotEvents. Graphical parameters like xlab,
ylab, main, etc, can also be specified outside of the
control list.
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reReg() with method = "cox.GL"

• The baseline functions can be plotted easily
> plotRate(fit)
> plotHaz(fit)
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reReg() with method = "cox.GL"

• The baseline functions with smooth splines
> plotRate(fit, smooth = TRUE)

> plotHaz(fit, smooth = TRUE)
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reReg() with method = "cox.GL"

• Advantage:
• The estimating equation can be solved by the coxph() from the survival

package.
• A joint model that allows terminal event

• Limitation:
• Assumes the recurrent event process is independent of the terminal events

given covariates
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reReg() with method = "cox.HW"

• When method = "cox.HW", reReg() gives the method proposed in
Huang and Wang (2004).

• Huang and Wang (2004) considered a similar joint model:{
Rate: λ(t) = Zλ0(t)eX>α

Hazard: h(t) = Zh0(t)eX>β .

• The main difference is in the inclusion of a nonnegative frailty variable, Z .
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reReg() with method = "cox.HW"

• One advantage of the frailty is that it accounts for heterogeneity that cannot
be explained by the observed covariates.

• Different from many frailty models, the model proposed by Huang and
Wang (2004) does not require a parametric assumption in the estimation
procedure.

• For identifiability, Huang and Wang (2004) assumes Λ0(τ) = 1 and
E(Zi |Xi ) = E(Zi ) = µZ is constant.
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reReg() with method = "cox.HW"

• The estimation of α, β, λ0(t), and h0(t) can be divided into the following
steps:

1. Following Wang et al. (2001), the baseline cumulative rate function is estimated
by

Λ̂0(t) =
∏

s(l)>t

{
1−

∑n
i=1

∑mi
j=1 I(tij = s(l))∑n

i=1

∑mi
j=1 I(tij ≤ s(l) ≤ Yi )

}
,

where {s(l)}’s are ordered, distinct values of {tij}.
2. Estimate α and µz through

U1n(γ) =
1
n

n∑
i=1

X̄>i

{
mi

Λ̂0(Yi )
− eX̄>

i γ

}
,

where X̄i = {1,Xi}, γ = (log(µz), α)>.
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reReg() with method = "cox.HW"

3. Estimate β through

U2n(β) =
1
n

n∑
i=1

∆i

Xi −
∑n

j=1 XjZjeX>
j β I(Yj ≥ Yi )∑n

j=1 Zje
X>

j β I(Yj ≥ Yi )

 ,

where Zj is estimated by

Ẑi =
mi

Λ0(Yi )eX>
i α̂

,

and is replaced by 0 if 0/0 occurs.
4. The hazard function is estimated with

Ĥ0(t) =
n∑

i=1

∆i I(Yi ≤ t)∑n
j=1 ẐjeXj β̂ I(Yj ≥ Yi )

.
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reReg() with method = "cox.HW"

• The method can be fitted with
> fit <- reReg(Recur(Time, id, event, status) ~ x1 + x2, data = datCox,

+ method = "cox.HW")

> summary(fit)

Call: reReg(formula = Recur(Time, id, event, status) ~ x1 + x2, data = datCox,

method = "cox.HW")

Method: Huang-Wang Model

Coefficients (rate):

Estimate StdErr z.value p.value

x1 1.143 NA NA NA

x2 -1.016 NA NA NA

Coefficients (hazard):

Estimate StdErr z.value p.value

x1 0.893 NA NA NA

x2 -0.984 NA NA NA
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reReg() with method = "cox.HW"

• The baseline functions are given by
> plot(fit)
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reReg() with method = "cox.HW"

• Advantage:
• A joint model that allows terminal event
• Allows informative censoring
• A resampling based variance estimation can be adopted to facilitate variance

estimation
• The estimation procedure does not require the strong Poisson assumption.

• Limitation:
• The variance estimation with bootstrap procedure could be slow when sample

size is very large
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reReg() with method = "am.GL"

• When method = "am.GL", reReg() gives the method proposed in
Ghosh and Lin (2003)

• The general idea is similar to the proposed method in Ghosh and Lin
(2002).

• Ghosh and Lin (2003) assumes the joint model:{
Rate: λ(t) = λ0(teX>α)eX>α

Hazard: h(t) = h0(teX>β)eX>β .

• The marginal model is in an accelerated failure time model.

• Ghosh and Lin (2003) refers their model as an accelerated rate time model.
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reReg() with method = "am.GL"

• The estimating procedure consists of the following steps:
1. Estimating β:

U1n(β) =
1
n

n∑
i=1

∆i

Xi −
∑n

j=1 Zj I(YjeX>
j β ≥ YieX>

i β)∑n
j=1 I(Yje

X>
j β ≥ YieX>

i β)

 .

2. Estimating α with artificial censoring:

U2n(α) =
n∑

i=1

mi∑
k=1

I(tik eX>
i α ≤ YieX>

i α−d )

Xi −
∑n

j=1 Xj I(tik eX>
i α ≤ YjeX>

j α−d )

Xj I(tik eX>
i α ≤ Yje

X>
j α−d

)

 ,
where d = maxi X>i (β̂ − α).
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reReg() with method = "am.GL"

3. Baseline cumulative rate function:

Λ0(t ;α) =
n∑

i=1

I(YieX>
i α−d ≤ t)

mi∑
k=1

I(tik eX>
i α ≤ YieX>

i α−d )∑n
j=1 I(tik eX>

i α ≤ Yje
X>

j α−d
)
.

4. Baseline cumulative hazard function:

Λ0(t ;β) =
n∑

i=1

∆i I(YieX>
i β ≤ t)∑n

j=1 I(Yje
X>

j β ≥ YieX>
i β)

.
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reReg() with method = "am.GL"

• The reReg() fit gives:
> fit <- reReg(Recur(Time, id, event, status) ~ x1 + x2, data = datCox,

+ method = "am.GL")

> summary(fit)

Call: reReg(formula = Recur(Time, id, event, status) ~ x1 + x2, data = datCox,

method = "am.GL")

Method: Ghosh-Lin Model

Coefficients (rate):

Estimate StdErr z.value p.value

x1 -1.232 NA NA NA

x2 -77.590 NA NA NA

Coefficients (hazard):

Estimate StdErr z.value p.value

x1 1.907 NA NA NA

x2 -2.103 NA NA NA

• A large bias is observed because datCox was generated under the Cox
assumption.
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reReg() with method = "am.GL"

• The bias went down when generating under the correct model
> set.seed(0); datAM <- simSC(500, c(1, -1), c(1, -1), type = "am")

> fit <- reReg(Recur(Time, id, event, status) ~ x1 + x2, data = datAM,

+ method = "am.GL")

> summary(fit)

Call: reReg(formula = Recur(Time, id, event, status) ~ x1 + x2, data = datAM,

method = "am.GL")

Method: Ghosh-Lin Model

Coefficients (rate):

Estimate StdErr z.value p.value

x1 1.523 NA NA NA

x2 -1.105 NA NA NA

Coefficients (hazard):

Estimate StdErr z.value p.value

x1 0.631 NA NA NA

x2 -1.146 NA NA NA
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reReg() with method = "am.GL"

• The baseline functions are given by
> plot(fit)
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reReg() with method = "cox.HW"

• Advantage:
• A joint model that allows terminal event

• Limitation:
• Does not account for informative censoring
• Could be inefficient when the censoring rate is high
• The variance estimation with bootstrap procedure could be slow when sample

size is very large
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reReg() with method = "am.XCHWY"

• When method = "am.XCHWY", reReg() gives the method proposed in
Xu et al. (2017)

• Xu et al. (2017) assumes the joint model:{
Rate: λ(t) = Zλ0(teX>α)eX>α

Hazard: h(t) = Zh0(teX>β)eX>β .

• As in the work of Huang and Wang (2004), the identifiability assumptions
require Λ0(τ) = 1 and E(Z |X ) = E(Z ) = µZ is a constant.
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reReg() with method = "am.XCHWY"

• The estimation procedure consists of the following steps:
1. Consider the transformed time, t∗ij (a) = tijeX>a and Y ∗i (a) = YieX>a, the

baseline rate function can be estimated from

Λ̂0(t , a) =
∏

s(l)>t

{
1−

∑n
i=1

∑mi
j=1 I[t∗ij (a) = s(l)]∑n

i=1

∑mi
j=1 I[t∗ij (a) ≤ s(l) ≤ Y ∗i (a)]

}
,

where {s(l)}’s are ordered, distinct values of {t∗ij (a)}.
2. The regression coefficient α is estimated through solving

U1n(a) =
1
n

n∑
i=1

Xi

 mi

Λ̂0[Y ∗i (a)]
− 1

n

n∑
j=1

mj

Λ̂0[Y ∗j (a)]

 .

108/130



reReg() with method = "am.XCHWY"

3. Using the borrowing-strength technique from Wang et al. (2001); Huang and
Wang (2004), β can be estimated by solving

U2n(b) =
1
n

n∑
i=1

∆i

{
Xi −

∑n
j=1 XjZj I[Y ∗j (b) ≥ Y ∗j (b)]∑n

j=1 Zj I[Y ∗j (b) ≥ Y ∗j (b)]

}
,

where Zi is estimated by
Ẑi =

mi

Λ̂0(Y ∗i (α̂))
.

4. Lastly, the baseline hazard function can be estimated via

Ĥ0(t , b) =
n∑

i=1

∆i I[Y ∗i (β̂) ≤ t ]∑n
j=1 Ẑi I[Y ∗j (β̂) ≥ Y ∗i (β̂)]

.
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reReg() with method = "am.XCHWY"

• The reReg() fit gives:
> fit <- reReg(Recur(Time, id, event, status) ~ x1 + x2, data = datAM,

+ method = "am.XCHWY")

> summary(fit)

Call: reReg(formula = Recur(Time, id, event, status) ~ x1 + x2, data = datAM,

method = "am.XCHWY")

Method: Xu et al. (2016) Model

Coefficients (rate):

Estimate StdErr z.value p.value

x1 1.180 NA NA NA

x2 -1.091 NA NA NA

Coefficients (hazard):

Estimate StdErr z.value p.value

x1 0.334 NA NA NA

x2 -1.088 NA NA NA
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reReg() with method = "am.XCHWY"

• The key feature of the work of Xu et al. (2017) is similar to that of the Huang
and Wang (2004)

• Advantage:
• A joint model that allows terminal event
• Allows informative censoring
• A resampling based variance estimation can be adopted to facilitate variance

estimation
• The estimation procedure does not require the strong Poisson assumption.
• Easy interpretation

• Limitation:
• The variance estimation with bootstrap procedure could be slow when sample

size is very large
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reReg() with method = "sc.XCYH"

• When method = "sc.XCYH", reReg() gives the methods proposed in
Xu et al. (2019).

• Xu et al. (2019) models the rate function of the recurrent event process via
a scale-change model

λi (t) = Ziλ0(teX>
i α)eX>

i β , t ∈ [0, τ ].

• The model reduces to the following special cases:
• Cox model when α = 0
• Accelerated rate model when β = 0
• Accelerated mean model when α = β

• Allows model selection through testing Ho : α = 0, Ho : β = 0, and
Ho : α = β.
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reReg() with method = "sc.XCYH"

• The estimation procedure is based on the transformed time; similar to that
in Xu et al. (2017).

• Consider the transformation t∗ij = tijeX>
i α, Y ∗i = YieX>

i α

• The estimation procedure consists of the following steps:
1. The regression coefficient α can be estimated by solving

1
n

n∑
i=1

∫ ∞
0

{
Xi −

∑n
j=1 Xj

∑mi
j=1 I{t∗ij ≤ t ≤ Y ∗i }∑n

j=1

∑mi
j=1 I{t∗ij ≤ t ≤ Y ∗i }

}
dN∗i (t) = 0.

2. The baseline hazard function can be estimated via λ̂0(t) = exp{Ĥ(t)}, where

Ĥn(t , a) = −
∫ ∞

t

∑n
i=1 dN∗i (u)∑n

i=1

∑mi
j=1 I{t∗ij ≤ t ≤ Y ∗i }

.
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reReg() with method = "sc.XCYH"

3. Lastly, the regression coefficient β is estimated by solving

n−1
n∑

i=1

Xi

[
mi Λ̂

−1
n {Y ∗i (α̂n)} − eX>

i (β−α̂n)
]

= 0,

where α̂n is obtained from Step 1.
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reReg() with method = "sc.XCYH"

• Since the scale-change model includes the Cox model and the accelerated
mean model as special cases, it is expected to have a low bias when
applying it to datCox and datAM that we generated before.

• Applying to datCox
> fit1 <- reReg(Recur(Time, id, event, status) ~ x1 + x2, data = datCox,

+ method = "sc.XCYH")

> summary(fit1)

Call: reReg(formula = Recur(Time, id, event, status) ~ x1 + x2, data = datCox,

method = "sc.XCYH")

Method: Generalized Scale-Change Model

Scale-change effect:

Estimate StdErr z.value p.value

x1 -0.125 NA NA NA

x2 -0.006 NA NA NA

Multiplicative coefficients:

Estimate StdErr z.value p.value

x1 1.088 NA NA NA

x2 -1.007 NA NA NA
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reReg() with method = "sc.XCYH"

• Applying to datAM
> fit2 <- reReg(Recur(Time, id, event, status) ~ x1 + x2, data = datAM,

+ method = "sc.XCYH")

> summary(fit2)

Call: reReg(formula = Recur(Time, id, event, status) ~ x1 + x2, data = datAM,

method = "sc.XCYH")

Method: Generalized Scale-Change Model

Scale-change effect:

Estimate StdErr z.value p.value

x1 0.955 NA NA NA

x2 -1.009 NA NA NA

Multiplicative coefficients:

Estimate StdErr z.value p.value

x1 1.055 NA NA NA

x2 -1.046 NA NA NA
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reReg() with method = "sc.XCYH"

• The key feature of the work of Xu et al. (2017) is similar to that of the Huang
and Wang (2004)

• Advantage:
• More robust to model misspecification
• Model selection via hypothesis test

• Limitation:
• Bias-variance trade off
• Can be extended to a joint model setting
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reReg(); Interpretation

• The interpretation of the covariate effect in the scale-change model involves
two types of modification on the rate function:

• a scale-change effect that alters the time scale by a factor of eX>
i α.

• a multiplicative effect that modifies the magnitude of the rate function by a
factor of eX>

i β .
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reReg(); Interpretation

• Consider hypothetical rate functions with both α and β negative.
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reReg(); Variance estimation and control

• The variance estimation is controlled by the argument se.

• Currently, there are three options:

NULL variance estimation will not be performed. This is equivalent
to setting B = 0

bootstrap performs nonparametric bootstrap
resampling performs the efficient resampling-based sandwich estimator.

• Generally speaking, the resampling-based sandwich estimator is faster
than the bootstrap approach, as it does not require solving estimating
equations repeatedly.
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reReg(); Variance estimation and control

• The control list consists of the following parameters:

tol absolute error tolerance used in solving estimating equations;
default at 0.001.

a0 & b0 initial guesses used for root search; default at zero vectors.
solver the equation solver used for root search. The available

options are BB::BBsolve (default), BB::dfsane,
BB:BBoptim, and optim.

parallel is an logical value indicating whether parallel computing will
be applied when se = "bootstrap".

parCl is an integer value specifying the number of CPU cores to be
used when "parallel = TRUE". The default value is half the
CPU cores on the current host.
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reReg(); Variance estimation and control

• Here is an example that shows the advantage of parallel computing:
> system.time(fit1 <- reReg(Recur(Time, id, event, status) ~ x1 + x2,

+ data = datCox, B = 50, se = "b", method = "cox.HW",

+ control = list(parallel = FALSE)))

user system elapsed

91.968 0.000 91.980

> parallel::detectCores()

[1] 8

> system.time(fit2 <- reReg(Recur(Time, id, event, status) ~ x1 + x2,

+ data = datCox, B = 50, se = "b", method = "cox.HW",

+ control = list(parallel = TRUE, parCl = 8)))

user system elapsed

25.024 0.144 43.389
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reReg(); Variance estimation and control

• The parallel computing does improve the overall computational speed, but it
is not the only factor.
> summary(fit1)

Call: reReg(formula = Recur(Time, id, event, status) ~ x1 + x2, data = datCox,

B = 50, method = "cox.HW", se = "b", control = list(parallel = FALSE))

Method: Huang-Wang Model

Coefficients (rate):

Estimate StdErr z.value p.value

x1 1.143 0.105 10.895 < 2.2e-16 ***
x2 -1.016 0.047 -21.576 < 2.2e-16 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Coefficients (hazard):

Estimate StdErr z.value p.value

x1 0.893 0.163 5.480 < 2.2e-16 ***
x2 -0.984 0.080 -12.333 < 2.2e-16 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• summary(fit2) gives similar results.

123/130



reReg(); summary

• Currently, the reReg() allows users to choose from one of the six methods
"cox.LWYY", "cox.GL", "cox.HW", "am.GL", "am.XCHWY",

"sc.XCYH".

• These methods can be divided based on the presence of the terminal
events and the ability to handle informative censoring.
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reReg(); new features coming up

• Informative censoring exists in many medical applications, e.g., informed
dropouts, patient visits in a as-needed basis.

• Approaches that accounts for informative censoring is more appropriate
(Huang and Wang, 2004; Xu et al., 2017, 2019).

• The borrowing-strength technique (Wang et al., 2001) made these
approach even more appropriate by not requiring a parametric assumption
on the frailty variable used to account for informative censoring.

• Our next step is to extend the method sc.XCYH to a joint model setting,
that will eventually allow users to choose the underlying model assumption
for the rate function and the hazard function for the recurrent process and
the terminal event, respectively.
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Online resource

• Updates on the reReg will be posted at www.sychiou.com/reReg/
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Online resource

• Updates on the reda are posted at www.wenjie-stat.me/reda/
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Instructor’s contact information

• If you have any questions (especially if you spot bugs), please feel free to
contact me at schiou@utdallas.edu.

• You can also find relevant works from my website www.sychiou.com
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