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Motivation



Survival data with a cure rate fraction

• We usually assume all subjects will eventually experience the event
of interest if the follow-up period is sufficiently long.

• It is possible that some subjects may never experience the event in
their lifetime→ cured subject.
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The melanoma data

• The melanoma dataset came from the Eastern Cooperative
Oncology Group phase III clinical trial e1684 [Kirkwood et al., 1996].
> data(e1684, package = "smcure")

> head(e1684)

TRT FAILTIME FAILCENS AGE SEX

1 1 1.15068 1 -11.0359437 0

2 1 0.62466 1 -5.1290437 0

3 0 1.89863 0 23.1859563 1

4 0 0.45479 1 11.1448563 1

5 0 2.09041 1 -13.3208437 0

6 1 9.38356 0 0.9421563 0

• The event of interest is the relapse of melanoma.

• Treatment can completely cure melanoma, especially when it has
not spread extensively.
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The melanoma data

• The primary objective is to determine the effectiveness of the high
dose interferon alpha-2b (IFN) regimen.

• Covariates of interests are treatment (1 = IFN), gender (1 = female),
and age (centered to 0).

• After excluding missing data, the overall censoring rate is 30.9% out
of the 284 remaining subjects.
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The dental data

• The dental dataset [Calhoun et al., 2018] contains dental records
from 5336 patients between August 2007 and March 2013.
> data(Teeth, package = "MST")

> dim(Teeth)

[1] 65228 56

• The outcome of interest is the time to the first tooth loss.

• The overall censoring rate is 74.1%.

• There is a total of 44 risk factors, including tooth-level factors,
subject-level factors, demographic factors, and health factors.
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Survival data with a cure rate fraction

• Models do not account for the cure fraction and could lead to biased
estimates of the survival of the uncured subjects [Peng and Yu,
2021].

• In general, it is difficult to identify the cured subjects, but their
presence is signaled by a leveling of the Kaplan-Meier (KM) survival
curve at the end of the follow-up.
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Survival data with a cure rate fraction

• The KM survival curve for the melanoma data.
• Treatment/Male; Treatment/Female; Placebo/Male;

Placebo/Female.
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Survival data with a cure rate fraction

• The KM survival curve for the tooth data.
• Non-molar; Molar.
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Survival data with a cure rate fraction

• Maller and Zhou [1992] proposed a nonparametric test to assess the
existence of a cure fraction.

• The test is implemented in the npcure::testmz() function from
the npcure package [de Ullibarri et al., 2020].

• The Maller-Zhou test confirms the observations on the KM plot with
p-values < 0.001.
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Challenges

• Two types of cure models have been popular in the literature;
• Mixture cure model, e.g., Farewell [1982], Peng and Dear [2000], Li

and Taylor [2002].
• Bounded cumulative hazard (BCH) model (also known as the

promotion time cure model), e.g., Yakovlev et al. [1993], Tsodikov
[2002], Sposto [2002].

• EM-based approaches are usually computationally demanding.

• Even if the cure fraction is accounted for, the dental study posts
additional challenges on high-dimensionality.

• We will focus on the mixture cure model in this presentation, but
extension to the BCH model is available in our manuscript.
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Notations and cure models



Notations

• Let Y denote the cure status; Y = 1 if the subject eventually
experiences an event (uncured).

• The survival time of a subject can be expressed as

T = YT ∗ + (1− Y )×∞,

where T ∗ <∞ is the failure time if the subject is uncured.

• Let C be the censoring time, δ = I(T ≤ C) be the censoring status,
and T̃ = min(T ,C) be the observed survival time.

• We note that δ = 1→ Y = 1 but Y is not observed when δ = 0.
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The mixture cure model

• The mixture cure (MC) model expresses the population survival
function as

S(t) = (1− π) + πSu(t),

where π = P(Y = 1) is the uncured rate, and Su(t) is the conditional
survival function of T given Y = 1.

• The MC model consists of two components;
• an incidence component that models π.
• a latency component that models Su(t).
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The mixture cure model

• The incidence component, π, is usually assumed to follow a logistic
regression model

π(X ) = P(Y = 1|X ) =
exp(α0 + X>α)

1 + exp(α0 + X>α)
,

where α0 is a scalar and α is a p-dimensional vector.
• Other link functions can also be applied to the incidence part.

• log-log link: log[− log{1− π(X )}] = X>α.
• probit link: Φ−1{π(X )} = X>α.
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The mixture cure model

• The latency component, Su(t), can be modeled with a Cox model

h(t |Z ) = h0(t)eZ>β

• or an AFT model.
h(t |Z ) = h0(teZ>β)eZ>β,

where β is a q-dimensional vector.
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Pseudo-observations and cure
models



Pseudo-observations

• Pseudo-observations was first proposed by Andersen et al. [2003] to
model the transition probabilities in multi-state models.

• Since then, the pseudo-observations approach has been applied to
many settings in survival analysis;

• survival estimates [Klein et al., 2007],
• restricted mean survival times [Andrei and Murray, 2007],
• cumulative incidence function [Nicolaie et al., 2013],
• relative survival function [Pavlič and Perme, 2019],
• illness-death model with interval-censored data [Sabathé et al., 2020],
• causal inference for recurrent event data [Su et al., 2020].

• However, the pseudo-observations approach has not been applied
to the analysis of survival data with a cure fraction.
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Pseudo-observations

• The concept is to create pseudo values for the quantities of interest
using the analogy of leave-one-out cross-validation.

• These pseudo values are then treated as complete data where
standard methods can be conveniently applied.

16/46



Pseudo-observations

• To illustrate the idea, let Vi be independent and identically distributed
random variables, Xi be a vector of covariates, and suppose the
interest lies on modeling E{f (Vi)|Xi}.

• Suppose not all of f (Vi) are observed, the pseudo-observation of
f (Vi) can be constructed by

ν̂ i = nν̂ − (n − 1)ν̂(−i),

where ν̂ is a consistent and unbiased estimator of f (Vi) and ν̂(−i) is
the estimator without the i th subject.

• Large sample properties have also been investigated [e.g., Jacobsen
and Martinussen, 2016, Overgaard et al., 2017].
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Pseudo-observations for mixture cure model

• The MC model has two components; π and Su(t).

• Motivated by Maller and Zhou [1992], the uncured rate π can be
estimated by π̂ = 1− Ŝ(tmax) implying the pseudo observations

π̂i = nπ̂ − (n − 1)π̂(−i),

where Ŝ(·) is the KM estimator and tmax is the maximum observed
event time.
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Pseudo-observations for mixture cure model

• The MC model implies that an consistent estimator for Su(t) is

Ŝu(t) =
Ŝ(t)− Ŝ(tmax)

1− Ŝ(tmax)
.

• This implies the pseudo-observations for Su(t),

Ŝi
u(t) = nŜu(t)− (n − 1)Ŝ(−i)

u (t),

where Ŝ(−i)
u (t) = {Ŝ(−i)(t)− Ŝ(−i)(tmax)}/{1− Ŝ(−i)(tmax)} is the

estimator for Su(t) without the i th sample.
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Pseudo observations for mixture cure model

• To estimate the incidence parameters, we consider the following
generalized linear model (GLM),

g1

(
E [Yi |Xi ]

)
= α0 +α>Xi ,

where g1(·) is a link function, e.g, g1(x) = log{x/(1− x)}
corresponds to the logit link.
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Pseudo observations for mixture cure model

• To estimate β, the pseudo observations for Su(t) are evaluated at
t = {t1, . . . , tH}, a set of distinct times between 0 and tmax.

• We can assume the GLM

g2

(
E [I(T ∗i > th)|Zi ]

)
= ξth + β>Zi ,

where ξth is the intercept at time th, β is the regression parameters,
and g2 is a link function.

• We set g2(x) = log{− log(x)} and ξth = log Λ0(th), so the GLM model
for β becomes the Cox model.
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Pseudo observations for mixture cure model

• GEE approach is used to estimate the regression parameters in the
two components.

• The GEE for the two components are:

U(α0,α) =
n∑

i=1

∂g−1
1 (α0 +α>Xi)

∂(α0,α)

{
π̂i − g−1

1 (α0 +α>Xi)
}

= 0,

S(ψ) =
n∑

i=1

∂g−1
2 (t ,ψ; Zi)

∂ψ
V−1

i

{
Û i

u(t)− g−1
2 (t ,ψ; Zi)

}
= 0,

where ψ = (ξt1 , . . . , ξth ,β), Ŝi
u(t) = {Ŝi

u(t1), . . . , Ŝi
u(tH)}>, Vi is the

working variance.
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Variance estimation and model diagnosis

• Solving GEE by the geese() function in geepack [Halekoh et al.,
2006], which utilizes the jackknife variance estimates .

• We follow the idea of pseudo-residuals [Andersen and Perme, 2010]
to assess the goodness-of-fit.

• The pseudo- residuals are defined as π̂i − g−1
1 (α̂0 + α̂>Xi) and

Ŝi
u(t)− g−1

2 (ξ̂t + β̂>Zi) calculated at a given time t ∈ t .

• If the model fits the data well, no trend should be perceptible when
plotting residuals against a covariate.
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Variable selection

• The proposed pseudo-observations approach allows variable
selection and parameter estimation to be simultaneously
implemented in each component.

• We consider penalizing the GEEs [Wang et al., 2012].

S(α0,α) = U(α0,α)− qλ(|α|) ◦ sign(α),

S(ψ) = U(ψ)− qλ(|β|) ◦ sign(β),

where qλ(·) is a vector of penalty functions for some tuning
parameter λ and u ◦ v is the element-wise product of u and v .
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Variable selection

• We select the tuning parameters via cross-validation.

• For a given tuning parameter λ, we calculate the overall
cross-validated prediction error based on the pseudo-residuals.

• We use the estimates obtained from the unpenalized GEEs as the
initial values.

25/46



Simulation



Simulation 1

• We generate the cure status from a logistic model

P(Y = 1|X ) =
exp(α0 − X )

1− exp(α0 − X )
,

where X is a Bernoulli(0.5) random variable.

• The intercept was chosen to be α0 = 2.8,2 or 0.9 to achieve the
average cure rates of 10%, 20%, and 40%.

26/46



Simulation 1

• The event times were generated from the proportional Cox model:

λ(t |Z ) = λ0(t) exp(Z1 + 0.5Z2),

where λ0(t) = 1/3, Z1 is a Bernoulli(0.5) random variable, and Z2 is
a uniform(0, 1) random variable.

• The censoring time is generated from Uniform(0, c), where c is
chosen so the overall censoring rate is 10% more than the cure rate.

• The pseudo-observations for Su(t) are calculated at
0 < t10 < . . . < t90 < tmax, where tp is the pth quantile of the
observed event times.

• We used exchangeable variance structure in the latency component.
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Simulation 1

Table 1: Simulation results under simulation 1; ESE is the empirical standard
error; ASE is the average standard error; CP is the coverage probability.

n Bias ESE ASE CP Bias ESE ASE CP

20% cure rate 40% cure rate
200 α0 0.040 0.431 0.453 95.4 -0.025 0.335 0.312 92.6

α1 -0.034 0.503 0.506 96.3 -0.001 0.425 0.411 95.6
β1 0.011 0.226 0.232 96.4 0.011 0.311 0.328 95.4
β2 0.005 0.379 0.381 96.5 0.005 0.558 0.556 94.6

400 α0 0.019 0.327 0.324 95.6 -0.017 0.290 0.276 93.8
α1 -0.027 0.377 0.388 95.8 -0.017 0.339 0.331 95.4
β1 0.016 0.159 0.162 96.0 -0.010 0.228 0.239 94.5
β2 0.022 0.277 0.272 96.2 -0.014 0.492 0.442 94.2

1000 α0 -0.010 0.216 0.211 94.9 -0.015 0.129 0.128 94.4
α1 0.007 0.201 0.199 95.2 0.016 0.168 0.169 94.8
β1 -0.001 0.093 0.104 96.4 -0.024 0.119 0.124 95.8
β2 -0.004 0.172 0.173 94.6 -0.023 0.234 0.229 94.8
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Simulation 1

Table 2: Run time (in seconds) comparison with EM-based method
implemented in the smcure package [Cai et al., 2012].

Proposed method

n smcure Incidence Latency Total

200 7.47 0.17 0.20 0.37
400 11.58 0.44 0.46 0.90
600 16.16 0.78 0.76 1.54
1000 30.03 1.75 1.64 3.39
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Simulation 1

• Overall virtually unbiased, ESE≈ASE, and reasonable CP.

• Discrete approximation to the baseline hazard function with a
continuous time scale, e.g., number of time points in constructing
pseudo-observations in Su(t).

• Our method is much faster than existing ones.
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Simulation 2

• We expand Simulation 1 by considering X = (X1, ...,X20).
• X1,X2 are independently generated from Uniform(0,1)
• X3 and X4 are independently generated from Bernoulli(0.5)
• X5, . . . ,X20 are generated from a multivariate normal distribution with

E(Xi ) = 0 and Cov(Xi ,Xj ) = 0.5|i−j|, for i , j = 5, . . . ,20.

• The regression parameters were set at α0 = 1.1,
α = (0,1,−1.2,0,0,−0.9,0.8,0,0, ...,0)>, and
β = (−0.7,0,1,0,−0.5,0.8,0,0,0, ...,0)>.

• Those configurations yield a cure rate of 30%.

31/46



Simulation 2

Table 3: Simulation results under simulation 2; MSE is the mean squared error;
TP is the true positive; FP is the false positive.

Incidence Latency
n MSE TP FP MSE TP FP

200 Oracle 1.64 4 0 0.41 4 0
SCAD 5.18 2.77 5.59 1.08 2.98 0.86

400 Oracle 0.75 4 0 0.23 4 0
SCAD 1.83 3.42 0.55 0.40 3.69 0.47

1000 Oracle 0.28 4 0 0.08 4 0
SCAD 0.44 3.93 0.30 0.22 3.88 0.21
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Data analysis



The melanoma data

• The event of interest is the relapse of melanoma.

• n = 284, overall censoring rate = 30.9%, and covariates are
treatment (1 = IFN), gender (1 = female), and age.

Table 4: The melanoma data; PE is the point estimator; SE is the standard
error; p is the p-value.

Incidence Latency
PE SE p PE SE p

Intercept 1.737 0.584 0.003 - - -
Treatment -1.294 0.633 0.040 -0.009 0.299 0.975
Gender -0.628 0.635 0.320 0.151 0.310 0.629
Age 0.024 0.013 0.066 -0.009 0.007 0.206
Treatment:Gender 0.903 0.755 0.228 -0.151 0.383 0.695
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The melanoma data

• The treatment improves the cured rate,for males.

• The positive age effect indicates that older patients tend to have a
higher relapse rate of melanoma.

• In the latency component, none of the four covariates are
significantly associated with the failure time if patients are uncured.
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The dental data

• The event of interest is time to the first tooth loss.

• n = 5336, overall censoring rate is 74.1%, and 44 risk factors.
• We considered the following penalties:

• least absolute shrinkage and selection operator (LASSO) [Tibshirani,
1996]

• adaptive LASSO (aLASSO) [Zou, 2006]
• smoothly clipped absolute deviation (SCAD) penalty [Fan and Li,

2001].

• The tuning parameters are selected via five-fold cross-validation.
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The dental data

Table 5: The dental data based on penalized GEE. Only the selected variables
and their estimated coefficients are presented.

LASSO aLASSO SCAD
Incidence Latency Incidence Latency Incidence Latency

Molar -0.327 -0.268 -0.392 -0.224 -0.618 -0.027
mobil 0.541 0.328 0.718 - 1.125 0.787
bleed 0.003 - 0.002 - 0.002 -
pocket_mean 0.428 - 0.417 - 0.746 -
cal_max 0.063 - 0.066 - - -
filled - - - - 1.372 -
decay_new 0.063 0.111 0.119 - 1.591 0.826
decay_rec 0.194 - 0.165 - 1.619 0.641
endo 1.091 - 1.088 2.074 -
filled tooth -0.431 -0.066 -0.450 - -0.690 -0.967
decayed tooth 0.524 - 0.577 - - -1.447
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The dental data

Table 6: The dental data based on penalized GEE (cont’d).

LASSO aLASSO SCAD
Incidence Latency Incidence Latency Incidence Latency

bleed_ave - - - - - 0.007
plaque_ave - - - - - -0.008
pocket_mean_ave 0.013 - 0.021 - - -
pocket_max_ave 0.017 - 0.023 - - -
decay_new_ave 0.788 - - 0.493 1.286 1.457
decay_new_sum 0.097 - 0.087 - 0.427 -0.006
decayed_tooth_sum 0.044 - 0.049 - - -0.001
decayed_tooth_ave - - - - -0.981 -
missing_tooth_ave - - - - -1.683 0.771
total_tooth 0.002 - - - - -
age 0.013 - 0.013 - - 0.004
gender -0.051 - -0.032 - -
diabetes - - - - - 0.691
Tobacco use 0.171 - 0.159 - - 0.422
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The dental data

• The LASSO and aLASSO selected more variables in the incidence
component while SCAD selected more variables in the latency
component.

• Commonly selected incidence factors are molar, mobility score
(mobil), bleeding on probing (bleed), periodontal probing depth
(pocket mean), decayed surfaces new (decayed new), decayed
surfaces recurrent (decayed recurrent), and endodontic therapy
(endo), filled tooth (filled tooth)
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Extension to the BCH model



Extension to the BCH model

• Suppose Λ(t) is the cumulative hazard function of T ∗ such that
Λ(∞) = θ > 0.

• Under the BCH model, the population survival function is

S(t) = exp{−θF (t)},

where F (t) = Λ(t)/θ is a proper cumulative distribution function of a
nonnegative random variable with F (0) = 0 and F (∞) = 1.

• The cure rate is indicated by limt→∞ S(t) = e−θ.
• The BCH model consists of two parts;

• a long-term effect that models θ.
• a short-term effect that models F (t).
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Extension to the BCH model

• To incorporate covariates effect in the BCH model, Tsodikov et al.
[2003] proposed a PHPH model

S(t) = exp[−θ(X ){1− F̄ (t)η(Z )}],

where θ(X ) = exp(γ0 + γ>X ), η(Z ) = exp(φ>Z ), and φ is a q × 1
vector of regression coefficients.

• We assume φ does not contain an intercept term to avoid
overparameterization.
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Extension to the BCH model

• Since the cure rate limt→∞ S(t) = exp(−θ) can be nonparametrically
estimated by Ŝ(tmax), θ can be estimated by θ = − log Ŝ(tmax).

• The pseudo-observations for θ is

θ̂i = nθ̂ − (n − 1)θ̂(−i),

where θ̂ = − log Ŝ(tmax).

• The pseudo-observations for F (t) is

F̂ i(t) = nF̂ (t)− (n − 1)F̂ (−i)(t),

where F̂ (−i) = log{Ŝ(t)}/ log{Ŝ(tmax)} [Tsodikov, 2002].
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Conclusion



Conclusion

• We extended the pseudo-observation to modeling cure models.
• Advantages:

• Faster than the usual EM-based approaches
• Fits two components separately.
• Variable selection.

• Future investigations
• AFT model in the latency component (short term effect).
• Post-selection inference.
• An R package.
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